

K2-1000

High-power dual-comb laser system

1 GHz repetition rate2 W per beam100 fs pulse durationSub-cycle relative timing jitter

Compact solution for spectroscopy

High-power for nonlinear studies

Ultra-low RIN and relative timing noise

DESCRIPTION

K2-1000 is an ideal platform for R&D applications. The system produces a pair of modelocked femtosecond lasers (optical frequency combs) with a slightly different pulse repetition rate. In the time domain, the optical delay is rapidly swept through a range of 1 nanosecond. In the frequency domain, beat notes between each pair of optical comb lines are generated via heterodyne detection. Through a novel shared-cavity architecture, our system is able to achieve ultra-low noise simply in free-running operation.

CUSTOM OPTIONS

- Wavelength options via OPO (inquire)
- Integrated second harmonic
- OEM version (K2-1000-mini line)
- Ultrabroadband configuration

APPLICATIONS

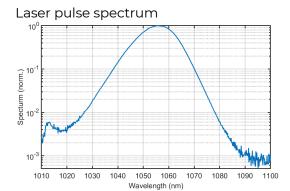
- Time-resolved spectroscopy
- Multi-species gas sensing
- Precision ranging
- THz-TDS

Related publications

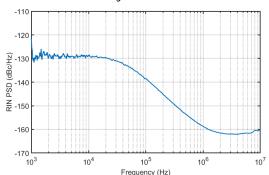
Coherently averaged dual-comb spectroscopy with a low-noise and highpower free-running gigahertz dual-comb laser

Phillips et al., Optics Express 31, 7103 (2023)

Ultra-low noise spectral broadening of two combs in a single ANDi fiber Camenzind et al., APL Photonics 10, 036119 (2025)



Long-Range and Dead-Zone-Free Dual-Comb Ranging for the Interferometric Tracking of Moving Targets


Camenzind et al., ACS Photonics 12, 1829 (2024)

EXAMPLE CHARACTERIZATION

Relative intensity noise measurement

LASER SPECIFICATIONS

Laser wavelength Power per comb

Pulse duration (FWHM)

Repetition rate

Pulse energy

Repetition rate difference

Relative timing jitter

Standard 1050 +/- 10 nm >2 W

SHG option 525 +/- 5 nm $> 100 \, \text{mW}$

<100 fs, clean sech² pulses, < 150 fs for SHG option

1 GHz +/- 0.1 GHz

> 2 nJ

tunable +/- 100 kHz <10 fs [1 kHz, 100 kHz]

AVAILABLE OUTPUTS

Optical

Cross-correlation signal

Digital signals

Two spatially separated pulse trains

Trigger signal at the repetition rate difference

 Δf_{rep} and f_{rep} values, logging and remote control via K2-Link

AVAILABLE INPUTS

Repetition rate

Repetition rate difference

Pump current

Power

 f_{rep} piezo actuation with integrated high-voltage amplifier (option)

Active Δf_{rep} stabilization and digital control

Pump diode current modulation capability for f_{CEO} locking

Power allocation between fundamental and harmonic (if applicable)

PHYSICAL DIMENSIONS

Laser head $(L \times W \times H)$

Beam output height

K2-Link control unit

494 x 291 x 179 mm³

75 mm on (W) side

395 x 436 x 88 mm³ (19" rack mountable, 2U)

REQUIREMENTS

Operating temperature

Relative humidity

Rated power

Electrical requirements

15 – 30 °C (Water or air options - hybrid design)

Non-condensing environment

300 W

100-120 VAC, 3 A, 50-60 Hz / 200-240 VAC, 1.5 A, 50-60 Hz

Product specifications and descriptions in this document are subject to change without notice.

